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We present an approach based on the geometrical optics approximation (GOA) for analysis
of liquid crystal cells whose director varies in more than one spatial dimension
(multidimensional liquid crystal cells). The GOA is applied to calculate light transmittance
and far field diffraction patterns for two- and three-dimensional nematic liquid crystal films.
Important features of the GOA, such as a method of eliminating non-convergence problems
that can occur during the iterative numerical solution of the equations for the amplitudes of
the electromagnetic field, are described. We compare the results obtained from the GOA with
those produced by the quasi-one-dimensional Jones calculus and the beam propagation
method, where the latter is applicable. It was found that the refraction (or ray bending)
effects, produced by the GOA, are more important than effects of diffraction and light
scattering, which means that the GOA (unlike the Jones calculus) is accurate for the
considered type of liquid crystal cells, whose director varies on the micron scale. The GOA is
about as fast as the Jones method and is applicable for calculating optical properties of liquid
crystal cells with any number of dimensions of director variations.

1. Introduction

The simplest approach for handling multidimen-

sional optics involves extending one-dimensional tech-

niques such as the 464 matrix methods [1] or the Jones

calculus [2]. In these approaches, lateral variations in

optical properties are ignored, and the multidimen-

sional behaviour is then obtained as a composite of

several one-dimensional calculations. This simple

description is applicable when the wavelength of light

l is very small relative to the characteristic size of the

director variations in transverse directions. At the other

extreme, when this size is smaller or comparable to l,

rigorous methods must be employed. One of the most

widely used is the so-called finite difference time

domain (FDTD) method [3–5], which is a direct

solution to the Maxwell curl equations. The time-

harmonic form of the Maxwell equations can be solved

directly as well, although different techniques are

required [6]. Both of these methods suffer from a

restriction on the size of problem that can be solved

effectively; this is because a sufficient number of grid

points per wavelength is required to model accurately

the electromagnetic fields throughout the region.

Another rigorous way of handling the multidimensional

optics is the grating method (GM) [7, 8]. This approach

can be applied to a LC cell periodic in the transverse

(xy) plane, so that the dielectric tensor becomes a

periodic function of x, y. Eventually, the GM gives a

coupled system of first order ordinary differential

equations for a set of the Fourier coefficients of the

transverse electromagnetic field components, which can

be considered as a vector Y in some space. This system

describes the evolution of Y along the z-direction

(normal to the cell substrates) and must be solved

numerically. As is clear, when the number of Fourier

harmonics that are taken into account by the method is

large, one can produce a very accurate solution. At the

same time, the matrix Â that describes the evolution

also becomes very large, and the calculation time could

be prohibitively huge as in the case of use of the FDTD

method for a cell with large linear sizes. Thus, it is

desirable to have a fast and, at the same time,*Author for correspondence; e-mail: georgey@seas.upenn.edu
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reasonably accurate method to calculate the optical

properties of multidimensional LC cells. One such

method that has been recently proposed is the reduced

grating method (RGM) [7, 8]. This innovative way of

describing optics is based on the projection of the

evolution matrix onto Krylov subspaces and the

application of the singular-value decomposition. It is

a modification of the GM, and can be shortly described
as follows. The vector Y(z~h) on the next z-level can

be calculated as exp (Â)Y(z~0) and requires the

computation of a significant number of vectors

fk~ÂkY(z~0), and is numerically inefficient. The

main idea of the RGM is that vectors fk are nearly

linearly dependent, so a relatively small number of

orthonormal vectors uk are enough to span approxi-

mately the space produced by vectors fk. In such a

situation, it is possible to obtain Y(z~h) with a good

accuracy and by 1–2 orders of magnitude faster (than

the usual GM) using a projection matrix formed by this

reduced set of uk instead of the full Â matrix. This was

illustrated by application of the RGM to the light
transmittance calculation for several 2D LC cells.

However, no physical explanation as to why the

RGM should work, except a good correspondence of

its results to the GM ones, has been presented, and an

additional study of properties of the RGM is desirable.

A wide angle beam propagation method (BPM) for

two-dimensional liquid crystal optics problems [9–11]

(including LC cells with a tilted–twisted director profile)

is another interesting method, which is applicable when

feature sizes are smaller or comparable to l. The basic

idea of the BPM is to replace the exact Maxwell

equations for components of the electric or magnetic

field by partial differential equations of parabolic type
that admit an efficient numerical implementation.

Although the equations so produced are not identical

to the initial Maxwell equations, they retain the most

important contributions from the Maxwell equations,

and allow, in particular, one to describe with very good

accuracy geometrical optics effects as well as processes

of light scattering (or light diffusion). The technique is

stable and fast in comparison with the FDTD

approach. Unfortunately, this way of describing

optics has the following important restriction: the

plane of incidence of light must coincide with the

plane of the director variations; this prevents the use of

the method for studying optical properties of LC cells
with a 3D director n̂n, as well as, for example,

calculating the viewing angle diagram even in a 2D

LC cell. The BPM, as well as the GOA and Jones

calculus, also neglects reflections inside the LC

structure. However, within the above-mentioned

bounds, it was demonstrated [9–11] that the results of

the BPM are in excellent agreement with the FDTD

calculations even when the geometry is comparable in

size to l.

In this paper, another description of the multi-

dimensional optics of liquid crystal media, based on the

geometrical optics approximation (GOA), is presented.

It is known [12] that the GOA is applicable if the ratio

k~l/2pl is small (here l is a characteristic scale of the

medium inhomogeneity). As is shown here, the GOA,

being about as fast as the Jones method, increases the

range of the optical description to include the micron

scale regime, where the latter approach loses its

accuracy. Meyer and Ong [13, 14] were the first to

apply the GOA to liquid crystals in one dimension.

This approach was applied later to study ray trajec-

tories and intensity variations for light propagating

through a periodically distorted homogeneous nematic

layer [15, 16]. The GOA has also been used to study ray

trajectories in the equatorial plane of a nematic liquid

crystal droplet with radial director configuration [17].

More recently, the GOA was successfully applied to

study the electro-optical performance of a self-com-

pensating vertically aligned liquid crystal display cell

[18], and has been used to investigate optical properties

of a switchable diffraction grating [19]. Finally, a

mathematical formalism of the GOA applicable for a

LC cell with a multidimensional director distribution

n̂n rð Þ has been considered, and an iterative solution for

the GOA equations was found for a cell with a 3D
director [20].

In this paper we describe shortly the mathematical

apparatus of the GOA paying more attention to an

important question related to removing from the model

problems of non-convergence of iterative numerical

solvers (§ 2). The presented formalism uses the ‘field’

approach, which is more convenient for computer coding

than the ‘ray’ method, which is usually employed.

Particular 2D and 3D cells were considered as examples

of the GOA application (§ 3). A comparison between the

results of calculations of the differential and averaged

light transmittance, as well as the diffraction spectra

produced by the GOA, BPM and Jones method, is also

presented. We do not compare the GOA results directly

with the results of the FDTD calculations, because, as

was found earlier [9–11], there is an excellent corre-

spondence between the BPM and FDTD, and in this

study we assume that the BPM gives an accurate

description (when it is applicable).

2. Mathematical formulation of the GOA

The GOA uses expansions for the electric and

magnetic fields E and H in powers of k0
21~l/2p:

E rð Þ~exp ik0S rð Þ½ �
X?

m~0

Em rð Þ= ik0ð Þm (1)
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with a similar expression for H. Here the function S(r)

is the optical path, or the eikonal. The surfaces of

constant S are orthogonal to the local wave vector

direction n(r)w+S and are the wavefronts of geome-

trical optics. After substituting (1) into the time-

harmonic wave equation for the electric field

+2Ei{+i +Eð Þ~ ik0ð Þ2eikEk ð2Þ
where eik is the dielectric tensor of the LC and summing

over repeated indices is assumed throughout the paper;

the lowest order terms give an eigenvalue equation for

two eigenvectors o and e, which are the directions of

polarization for the ordinary and extraordinary waves.

Corresponding eigenvalues So and Se (optical path

lengths of the ordinary and extraordinary waves) satisfy

equation [(+So)2–no
2] [(+Se)

2–(neff)
2]~0, where neff is

the effective index of refraction (for details of the

derivation see [20]). Thus, So satisfies (+So)2~no
2 and

can be solved analytically, at least in cases with

relatively simple cell geometries. The equation for Se is

LzSe~ B2{AC
� �1=2

{B
h i.

A ð3Þ

where the symbol hz denotes differentiation with respect

the z-coordinate (we assume that light propagates in

some direction in the half space of increasing z), and

the coefficients A, B, and C are determined by the

following relations:

A~1zDe n̂nzð Þ2,

B~De n̂nxLxSezn̂nyLySe

� �
,

C~n2
e{ LxSeð Þ2{ LySe

� �2
{De n̂nxLxSezn̂nyLySe

� �2
:

We do not take into account reflections inside a LC

film, which leaves only the plus sign before the radical

in equation (3). Equation (3) must be solved numeri-

cally, and in the examples considered in this study, the

centred finite difference method implicit in the z-

direction was used; the resulting nonlinear systems of

algebraic equations were solved using the nonlinear

Gauss–Seidel method. After finding So and Se, one can

determine the directions of the electric vectors of the

ordinary o and extraordinary e waves using the same

eigenvalue equation. To determine the corresponding

complex amplitudes Eo and Ee of these waves, higher

(next) order terms in the k0
21 expansion must be

considered. As a result, the whole vector of the electric

field can be presented as

E 0ð Þ rð Þ~Eoo exp ik0Soð ÞzEee exp ik0Seð Þ

z Ess=ik0ð Þexp ik0 SozSeð Þ=2½ �:
ð4Þ

From a physical point of view, the last term in

equation (4) provides the coupling between the ordinary

and extraordinary waves. This term is unavoidable: if

one drops it and substitutes equation (4) into (2), one

would obtain three differential equations to determine

only two amplitudes Eo and Ee (which is impossible in

the general case). This term is important in regions (like

a wall defect or near-substrate regions) where the

characteristic anisotropy strength Dn (birefringence)

can be of order 1/k0l (in these regions the characteristic

scale of the medium inhomogeneity l is of the order of

the correlation length j and is relatively small at high

voltages). Substituting this expression into the time-

harmonic wave equation (2) and combining terms with

first power of k0
21, one can derive the following

equations for the amplitudes Eo, Ee and Es:

e1Go
ik Eookð Þze2Ge

ik Eeekð Þ~EsAi ð5Þ
where i~x, y, z, e1,2~exp (¡ik0DS), and DS~Se–So.

In these equations Ai~eiksk

Go
ik Eookð Þ~2 LkSoLk Eooið Þ{LiSoLk Eookð Þ

{LkSoLi Eookð Þ

Ge
ik Eeekð Þ~LkSeLk Eeeið ÞzLk LkSe Eeeið Þ½ �

{Li LkSe Eeekð Þ½ �{LiSeLk Eeekð Þ
and hk denotes differentiating with respect xk. As one

finds, equations (5) does not contain space derivatives

of the amplitude Es. This is a consequence of a specific

choice of vector s in this study: s~+(SozSe)/

|+(SozSe)|. Eliminating Es from equations (5) gives a

final set of two first order differential equations for the

unknown complex amplitudes Eo and Ee of the

ordinary and extraordinary waves:

Az e1 Go
xk Eookð Þze2Ge

xk Eeekð Þ
� �

~Ax

e1Go
zk Eookð Þze2 Ge

zk Eeekð Þ
� �

ð6Þ
and

Az e1 Go
yk Eookð Þze2Ge

yk Eeekð Þ
h i

~Ay

e1Go
zk Eookð Þze2 Ge

zk Eeekð Þ
� �

: ð7Þ

Examples of the numerical solution of these equa-

tions with appropriate boundary conditions will be

considered in § 3. Let us discuss here an important

question concerning instabilities that can arise during

the solution of the amplitude equations (6) and (7).

These equations may be numerically solved in two

ways. First, one can develop an ‘exact’ solution,

produced by successivly eliminating unknowns at a

particular z-level; second, a solution, may be produced

by the iterative Gauss–Seidel method at each mesh

point (which is easier to code, especially in a 3D case).

The two solutions may not coincide for the following

LC optics modelling 1505
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reason. In the case when solutions are found iteratively,

there is a possibility of numerical instability (or

divergence) at some mesh points. The cause is that

the directions of the wave vectors of the ordinary and

extraordinary waves at these points almost coincide

with the director, and the difference between the

ordinary and extraordinary waves almost disappears.

On the other hand, from a mathematical point of view,

one has to solve a system of four linear inhomogeneous

equations (for the real and imaginary parts of Eo and

Ee) to find the complex amplitudes at a particular

point. Because of the above-mentioned degeneracy

between the ordinary and extraordinary waves, the

‘driving force’, which causes the polarizations o and e

to acquire unique positions at each mesh point, is

almost absent at a point of degeneracy, and the

eigenvectors o and e may become almost parallel or

antiparallel (at random) at some iteration step, which

causes the corresponding determinant DET of the

system of the four linear equations to be very small,

and this can be a root of the instability. At the same

time, this kind of divergence is a ‘mathematical’ one: it

does not appear if one solves exactly (numerically) the

amplitude equations, and is a consequence of the

particular way of solving the problem. Thus, to

produce the iterative solution, we have to find a way

to remove this difficulty. The way is not unique. The

simplest and, in our opinion, an effective way to

remove this problem can be explained (for the case of a

3D cell) as follows. The idea is to average Ei (where i

stands for the ordinary and extraordinary waves) at a

‘divergent’ point rd~(x, y, z) between the four

neighbouring mesh points instead of iterating the

amplitude equations at this point:

Ei x, y, zð Þ~ Ei xzDx, yzDy, zð Þ½ zEi xzDx, y{Dy, zð Þ

zEi x{Dx, yzDy, zð ÞzEi x{Dx, y{Dy, zð Þ�=4:
ð8Þ

To select the divergent points, we introduce a small

positive parameter CUT, and a condition |DET|vCUT

can be used to pick up all points like rd during the

numerical solution of the system of the amplitude

equations. Parameter CUT should be as small as

possible provided that the solution is still convergent.

In this case the number of mesh points at which the

proper iterative procedure for finding Ei is substituted

for the approximate formula (8) is minimal. If this

number is very small compared with the total number

of mesh points, one can expect that the produced

solution will also be very close to the exact numerical

one. In the case when the iterative solution converges,

parameter CUT can be set to zero (or not introduced at

all).

3. Application of the GOA

The developed GOA was applied to the calculation

of light transmittance (i) through a (LC) film with two-

dimensional director, which combines the concepts of

in-plane switching and vertical alignment [21, 22], and

(ii) through a three-dimensional LC cell associated with

a homeotropic to multidomain-like transition [23]

(HMD cell). Both cells possess systems of interdigitated

electrodes located on one (2D film), or on both (HMD

cell) substrates, and figures 1 and 2 show important

features of the cells. Strong homeotropic anchoring and

positive dielectric anisotropy are assumed (detailed

description of the director properties of the cells are

presented in [24–26]. The cells possess periodicity and

systems of wall defects. In the case of the 2D cell, the

central plane of one of these walls is the yz-plane at

x~0. Because the director always lies in the fixed xz-

plane, the wall defects are bend and splay walls. This

choice of a LC cell for studying the optical properties

was made to provide the possibility to compare the

results of optical calculations with the corresponding

results of the BPM where the latter is applicable. The

HMD cell also possesses a system of wall defects, which

lie approximately along vertical diagonal planes, such

as the AC and BD planes in figure 2. For both

structures we study the light transmittance for incident

light at a wavelength l~550 nm. A polarizer and

analyser are placed on opposite sides of a cell to probe

the polarization of the transmitted light. For simplicity,

polarizers and analysers are treated as ideal, and their

orientations are described in figures 1 and 2.

Figure 1. Schematic director profile for the 2D cell. Interval
of periodicity along the x-direction is L. The transmit-
tance axes of the polarizer and analyser make angles
245‡ and z45‡ with respect to the x-axis.
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3.1. The 2D cell

Experimental parameters of the 2D cell under

consideration are the following. The width w of the

electrode stripes, which are parallel to the y axis, is

w~10 mm, the period L~25 mm, the film thickness

d~5 mm; material parameters are: e||~8.3, e\~3.1,

K1~13.2 pN, K2~6.55 pN, K3~18.4 pN, and the bire-

fringence Dn~0.1. Equation (3) for the extraordinary

eikonal must be solved numerically with the following

initial (at z~0) and quasi-periodic conditions:

LxSe z~0ð Þ~ngx, Se xzL, zð Þ~Se x, zð ÞzLngx

and the amplitude equations (6) and (7) must be solved

to satisfy the periodicity conditions Ei(xzL, z)~Ei(x,

z).

Here ng~kg/k0~(ngx, ngy, ngz), where kg is the wave

vector in the glass, i~o, e. Figure 3 illustrates the x-

dependence of the value De~exx–no
2 drawn at z~d/2

(along the middle plane of the LC slab) for different

voltages u. This function characterizes the deviation of

the director distribution from the homeotropic one: it is

equal to zero at x~L/2 (wall defect) and at x~0, L. In

the region between the wall defect layer and the centre

of the nearest electrode, the sharpness of De(x)

increases with u. We compare results of calculations

of the differential light transmittance T(x) produced by

the GOA, BPM, and Jones method in the case of

normal incidence for the same voltages as in figure 3. It

is worth mentioning that for the considered 2D cell the

iterative solution can be made convergent without

introducing the parameter CUT mentioned above. For

this purpose, one can simply choose the k-vector of the

incidence radiation slightly off the normal with very

small but non-zero ky. Because the director is homo-

geneous along the y-direction, neither +So nor +Se can

become parallel to the director at any point inside the

LC slab (the director is always in the xz-plane), and the

iterative solution will converge and coincide with the

exact numerical one. For this reason, only exact

numerical GOA solutions are presented in figures 4–10.

For a low voltage (u~12 V or less for this cell), all

three curves essentially repeat the shape of De(x),

having only the central maxima at about the same value

of the x-coordinates as for the corresponding peaks of

De(x) in figure 3, and the results for T(x) produced by

the GOA and BPM coincide and are also very close to

those produced by the Jones method. When u increases,

all T(x) distributions flatten near their maxima, and

further increase of u produces concave regions instead

of peaks. One of the reasons for this is that the total

birefringence along the z-axis at a particular value of

the x-coordinate becomes larger than needed to reach

maximum transmission, and further increase of the

birefringence diminishes T(x). This is illustrated in

figure 4: instead of a central maximum, we have two

adjacent (lateral) peaks, and this effect can be explained

by any of the presented ways of optical calculation.

There is, however, an additional effect that increases

even more the amplitude of the lateral peaks. It is the

Figure 3. x-dependence of De~exx–no
2 for the 2D cell at

different voltages.

Figure 2. Top view of the HMD cell. The cell possesses 2L
periodicity along both the x- and y-directions. The
orientation of the crossed analyser and polarizer is shown
in the upper right corner.
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geometrical optics refraction due to which light rays are

bent by regions with sharp changes of the index of

refraction (De(x) in our case) towards the direction of

larger values of De(x). As one finds from figure 4, there

are two such regions at each side of the wall defect.

Unlike the Jones method, the geometrical optics

approach takes into account this effect, and the

redistribution of the transmitted light increases the

lateral maxima. As is clear from figure 4, this behaviour

of T(x) is in agreement with the BPM. Further increase

Figure 5. T(x) for the experimental 2D cell at u~20 V.

Figure 6. T(x) for the reduced 2D cell (L~12.5mm) at u~9 V.

Figure 7. T(x) for the reduced 2D cell (L~12.5 mm) at
u~14 V.

Figure 4. T(x) for the experimental 2D cell at u~15 V.
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of the voltage produces sharper maxima (figure 5). As

can also be seen from figure 5, both the GOA and BPM

give non-zero values T(x) at the centre of the wall

defect layer (unlike the Jones result), which is also due

to the effect of refraction: at high u this effect is more

pronounced, and a noticeable part of refracted light can

even reach the centre of the wall.

It is worth mentioning that an effect of the same kind

for an in-plane switching structure has been explained

only by diffraction [7], which is not completely correct.

The authors of [7] showed that the RGM (mentioned

above) gives a peak in the differential light transmit-

tance (unlike the Jones’s zero value), which is in

accordance to the experiment. However, the RGM, as

well as the BPM, takes into account both the ray

bending and diffraction. Because the GOA takes into

consideration only the former effect and, nevertheless,

reproduces properly the light transmission curve, we

should accept that the effects of geometrical optics

refraction are more important for the explanation of

the light transmission curve behaviour. It is also clear

from figure 5 that the peaks of the T(x) curve produced

by the BPM for high u are smoother than those from

the GOA. This is because the BPM, as has already been

mentioned, takes into account diffraction of light in

addition to the geometrical optics features. However, as

is clear from these figures, we have a very good

correspondence between the GOA and BPM, which

again means that the effects of light scattering and

diffraction are not significant at least for the considered

LC cell.

Let us now consider the same 2D LC cell but with

reduced sizes in the x-direction. Figures 6 and 7 show

the differential light transmittance for the case when the

cell period is L~12.5 mm and the electrode width is

w~3.75 mm (with the same cell thickness d, birefrin-

gence Dn, and material parameters as for the experi-

mental cell). As one finds from these figures, the

situation is qualitatively the same as for the cell with

experimental sizes. As a result, for a low u, when the

sharpness of the director distribution is less, we have a

close coincidence between the GOA and BPM

(figure 6). For high voltage (u~14 V is close to the

maximum of the T–V curve, or the bright state for the

display with these sizes), differences between the results

produced by the three methods are larger than for the

bright state of the experimental cell as can be found by

comparing figures 5 and 7. This is expected, because

characteristic scales of the spatially varying electric

Figure 8. Diffraction spectrum for the 2D cell with
L~12.5 mm at u~14 V produced from the GOA
near-field result.

Figure 9. Diffraction spectrum for the 2D cell with
L~12.5mm at u~14 V produced from the BPM near-
field result.

LC optics modelling 1509

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
4
2
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



potential, and hence, the director distribution, are

smaller for a cell with reduced sizes.

It is worth mentioning that the differential light

transmittance T(x) is very sensitive to small details of

the director distribution. Moreover, it depends, in

particular, on such circumstantial parameters of the LC

cell as the thickness of the glass substrate dg and the

thickness of the ideal polarizer dp (in this study an

artificial situation when dg and dp are close to zero was

assumed; in this case the influence of these parameters

on T(x) is negligible, and the differential light

transmittance reflects only properties of the director

distribution). In this regard it is important also to

consider diffraction from the LC cell under considera-

tion, and compare the diffraction patterns produced

from the near-field results of the GOA, BPM, and the

Jones method. As the averaged (over the cell period)

light transmittance, the far field diffraction pattern

reflects mainly features of the director distribution, and

the diffraction pattern is also relatively easy to measure.

To calculate the diffraction, we use the vector

Kirchhoff integral in its Fraunhofer limit, in which

the electric field in the far zone is approximated by the

following expression [27]:

E rð Þ~ i=2pð Þexp ik0rð Þ
ð

dx k| z|E x0ð Þ½ �f gexp {ikx0Þ:ð9Þð

Here ‘x’ means vector product, k~k0n, where n is a

unit vector in the direction of observation, r is the

distance between the cell centre and the observation

point, and the integration is performed throughout

some area (aperture) along the air-analyser interface

with a size 2r62r. To calculate the diffracted far field,

we have to substitute in equation (9) our near-field

result E(x’) that is calculated at the previous stage

(electric field immediately after exiting from the

analyser–air interface). As is known, the diffraction

pattern becomes manifest only at a distance r from a

diffracting system much larger than the linear dimen-

sion of the system 2r. To reconcile the fact of

boundedness of the cell with our previous assumption

about periodicity of the cell, we assume also that 2r is

much larger than L: 2r~NL with N of order 10 or

larger. In this situation, it is possible to approximate

E(x’)~E(x’) in our 2D case as a Fourier series

E x0ð Þ~
P
n

fn exp ikLnx0ð Þ for all coordinates x’ not

close to the cell edges, and kL~2p/L. Substituting

this expansion into (9) results in the corresponding

series of diffraction peaks at particular angles an~

a sin (nl/L) with amplitudes en and intensities

|en|2~|fnx|2z[1–(nl/L)2]|fny|2. Figures 8, 9, and 10

show the normalized intensities I anð Þ~ enj j2
�P

k

ekj j2

of diffraction patterns produced from the near-field

results of the GOA, BPM, and Jones method. As can

be seen from the figures, even for a relatively high

voltage the diffraction spectra produced from the GOA

and BPM appear identical, and different from the one

produced by the Jones method.

3.2. The HMD cell

Again, as in the previous 2D case, equation (3) for

the extraordinary eikonal, as well as the amplitude

equations (6) and (7), must be solved numerically with

the following conditions:

LxSe z~0ð Þ~ngx, LySe z~0ð Þ~ngy,

Se xz2L, y, zð Þ~Se x, y, zð Þz2Lngx,

Se x, yz2L, zð Þ~Se x, y, zð Þz2Lngy

Ei xz2L, y, zð Þ~Ei x, y, zð Þ, Ei x, yz2L, zð Þ

~Ei x, y, zð Þ:

The results of application of the GOA to the HMD

cell are shown in figures 11–18 for the case of normal

incidence when light is travelling from beneath the cell.

Figure 10. Diffraction spectrum for the 2D cell with
L~12.5 mm at u~14 V produced from the Jones near-
field result.
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Figures 11, 12 and 17, 18 show the differential light

transmittance T along the line ab (see figure 2):

T(x)wT(x, y~L/2). Figures 11, 17 and 18 describe

the HMD cell with geometrical sizes and birefringence

as in the experiment [23]: L~30 mm, electrode width

w~10 mm, d~5 mm, and Dn~0.088. The rest of the

figures show optical properties of the HMD cell with

reduced geometrical sizes.

As was shown in the case of the 2D cell, if the

iterative solution converges, it coincides with the exact

numerical solution. When the iterative solution fails to

converge, the difficulty can be removed as was

explained in § 2. It is clear, that if one chooses

Figure 13. Averaged light transmittances for the experimen-
tal and reduced (L~15 mm, w~5 mm) HMD cells with
Dn~0.088.

Figure 11. T(x) for the HMD cell (L~30 mm, w~10mm,
u~20 V, and Dn~0.15).

Figure 12. T(x) for the HMD cell (L~10 mm, w~3.4mm,
u~12 V, and Dn~0.12).

Figure 14. Averaged light transmittances for the reduced
(L~10mm, w~3.4mm) HMD cell with Dn~0.088.
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parameter CUT as small as possible to provide,

nevertheless, convergence, the number of ‘divergent’

points may be very small compared with the whole

number of usual (‘convergent’) mesh points at a fixed

value of the z-coordinate, and one can expect that the

solution will also be very close to the exact solution.

Indeed, our study showed that in all cases considered

here (including the HMD cell with reduced sizes) the

total number of the divergent points at each z-level, for

which the solution still exists, is about 0.1% of the total

number of mesh points on the z-level. Moreover, if one

increases CUT an order of magnitude compared with

its minimal value, then both iterative GOA solutions

Figure 16. Diffraction spectra for the HMD cell (L~10 mm,
w~3.4 mm, and Dn~0.12) at u~12 V produced from the
Jones near-field results.

Figure 17. T(x) for the model and direct computer calcula-
tions for the experimental HMD cell at u~14 V.

Figure 18. T(x) for the model and direct computer calcula-
tions for the experimental HMD cell at u~20 V.

Figure 15. Diffraction spectrum for the HMD cell
(L~10 mm, w~3.4 mm, and Dn~0.12) at u~12 V pro-
duced from the GOA near-field result.
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for T(x) are indistinguishably close to each other. The

fact that the solutions produced do not depend

noticeably on this parameter, also confirms that the

produced iterative GOA solutions describe the optics

properly.

Figure 11 shows a comparison between the iterative

GOA and Jones solutions for the experimental HMD
cell. As can be found from figures 5 and 11, differences

between the results produced by the GOA and the

Jones method are less for the HMD cell than for the 2D

cell even for significantly larger birefringence

(Dn~0.15) than experimental ones for both 2D and

3D cells (as was shown in [20], the difference between

the GOA and Jones method becomes larger when Dn

increases). A possible explanation for this observation

is as follows. In the 2D case, the surfaces where the

director remains homeotropic at non-zero voltages are

planes. However, the corresponding surfaces in the

HMD cell are more complicated: they are close to the

diagonal planes of the cell (like the planes AC and BD
in figure 2) only for values of the z-coordinate close to

the midpoint between the substrates, and deviate

significantly from these diagonal planes in the near-

substrate regions [26]. Due to this feature, the effect of

ray focusing in the HMD cell is less pronounced than in

the 2D cell. However, if we reduce the size of the HMD

cell, results produced by the Jones method deviate more

significantly from those produced by the GOA (see

figure 12).

This is expected, because the Jones method ignores

lateral director variations, which become increasingly

important for a cell with smaller geometrical sizes in the

x- and y-directions. At the same time, a characteristic
scale of these variations, which are of the order of the

electrode width w, is still much less than k0
21, and the

GOA is still applicable in the case of absence of a

strong ray focusing effect. As can be seen from

figures 13 and 14, even the averaged light transmittance

(T–V curves) produced by the Jones method deviates

significantly from the GOA results: the maxima shown

by the GOA for the cell with reduced sizes (L~15 mm

and w~5 mm, in figure 13, and L~10 mm and

w~3.4 mm, in figure 14) are absent in the Jones

calculations. A qualitative explanation of this effect,

as in the 2D case, is that the total (averaged)

birefringence becomes larger than needed to reach
maximum of the light transmittance.

As may be noticed from the results presented for

both cells, the differences between different methods (in

particular, between the GOA and Jones method)

increase when voltage and birefringence increase, or

cell sizes decrease. This is expected, because for larger u

or smaller sizes, the director variations in transverse

directions are sharper, and the corresponding spatial

derivatives become increasingly important. It is also

clear that for larger Dn the influence of these sharp

changes of the director on optical properties is more

tangible.

As in the 2D case, it is interesting to compare

diffraction spectra produced from the GOA and Jones

near field calculations for the HMD cell. Again,

starting from the vector Kirchhoff integral (9) in the

Fraunhofer approximation, and using double Fourier

series for the corresponding near field result

E x0ð Þ~
P
m,n

f m, nð Þexp ikL mx0zny0ð Þ½ �, where kL~p/L

for the HMD cell, one finds the corresponding series

for the far field intensity peaks:

e m, nð Þj j2~ f m, nð Þj j2{ ny Re fx m, nð Þ½ �{nx Re fy m, nð Þ
� �� �2

{ ny Im fx m, nð Þ½ �{nx Im fy m, nð Þ
� �� �2

:

Here Re and Im stand for real and imaginary parts,

nx~ml/2L, and ny~nl/2L. Figures 15 and 16 show

normalized intensities I m, nð Þ~ e m, nð Þj j2
,
P
m,n

e m, nð Þj j2

of diffraction peaks produced from the near-field

results of the GOA and Jones method. Unlike the

2D case, there are four major peaks in the directions

determined by vector N~(m, n) with N~(1, 1), (1, 21),

(21, 1), and (21, 21). This is a consequence of a

particular symmetry of the HMD cell [26]. As is clear

from the figure, the GOA and Jones diffraction spectra

are different from each other for the case of the HMD

cell with reduced size (L~10 mm, w~3.4 mm). This

result is expected in view of figure 12, and is analogous

to the observations illustrated in figures 8–10 for the

2D cell.

Finally, figures 17 and 18 display T(x) for the

director patterns calculated in two ways: using the

simplified model proposed in [24–26] and direct

computer calculation for two different voltages. The

model can be used for studying director distributions in

2D and 3D cells and provides a fast and accurate

method for the calculation of director fields for LC

cells. The main idea of the model is to solve numerically

the dynamic equation c1Ltn̂n~{dF=dn̂n for the director n̂n
using a corresponding exact expression for the free

energy F but an approximate analytical expression for

the electric field, produced by the model. In contrast,

currently used methods of direct computer solution

(e.g. the relaxation method) do not use an approximate

form for the electric field, but instead solve +eD~0 to

get the electric field after each director update, based on

the dynamic equation. As was shown, the proposed

model helps us to understand better the director and

electric field behaviour in liquid crystal cells and, for

the HMD cell, is about 20–50 times (depending on u)
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faster than direct computer calculation. As can be seen,

figures 17 and 18 show an excellent agreement in terms

of T(x) between the model and direct computer

calculation, which can serve as an additional and

important confirmation of the accuracy of the model.

From the technological point of view, the proposed

model for the director calculation (together with the

GOA) constitute an accurate and fast method for LC
display design, being extremely useful for finding

optimal conditions for 3D and 2D LC display

performance, when thousands of configurations must

be analysed. In this regard it is worth mentioning that it

is impossible, using additional optical elements (such as

Fuji films, a- and c-plates, biaxial films), to make all

gray scale levels perfect. It is usually even impossible to

make both the dark and bright states perfect. Decreas-

ing light leakage for the dark state at off-normal

directions can deteriorate also quality of the viewing

angle dependence of the bright state in the case of an

oblique incidence. It is usually feasible, however, to find

a compromise in choosing optimal conditions for the
dark and bright states: to make, for example, the dark

state really dark, and, at the same time, to have the

bright state also reasonably good in all azimuthal

directions even for large polar angles. Thus, one has to

analyse first only two states (dark and bright) of a LC

display. As an example, for both LC cells discussed

here, the director distribution for the dark state is

homeotropic and homogeneous, and one needs to find

the director only for the bright state. In this situation

the proposed model is especially useful and convenient:

it gives the same director distribution (and the same

optics) as from the direct computer solution, but is

about 50 times (for the HMD cell) and about 300 times
(for the 2D cell) faster. It is worth mentioning also that

for the case of the bright state of the LC cells

considered here, the corresponding analytical expres-

sion for the electric field used by the model is close to

its high voltage asymptote, which is obviously correct,

and the director model is especially well substantiated.

4. Conclusions

We have applied geometrical optics to liquid crystal

films with multidimensional director variations. Impor-

tant details of the GOA formalism, such as a method of

removing divergences from the iterative method of
solving the resulting equations for the complex

amplitudes of the electromagnetic field, are described.

A two-dimensional liquid crystal cell which combines

the concepts of in-plane switching and vertical align-

ment, and a three-dimensional cell associated with a

homeotropic to multidomain-like transition have

been considered as examples of the GOA application.

Comparisons of the results of calculations of

differential and averaged light transmittance, as well

as far field diffraction patterns produced by the GOA

and by other methods (the BPM and Jones calculus),

have been presented. The results of the analysis show

that the GOA gives a more accurate description than

the Jones calculus of the optics of liquid crystal films

whose director variations occur on the micron scale.

The geometrical optics approach is especially useful for

a three-dimensional cell when the finite difference time

domain method is extremely time consuming and the

beam propagation method is not applicable. Being

about as the fast as the Jones method, the GOA,

together with the simplified director model considered

previously, constitute an accurate and fast method for

LC display design, which could be extremely useful

when thousands of configurations must be analysed to

find optimal conditions for two- and three-dimensional

LC display performance.
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